2005 Solution Days

Yield
What determines yield potential?

Potential biomass growth (lb dry matter/acre/d) = light intercepted per day x RUE

RUE = (A - Rm) / Rg

A = Photosynthetic activity
Rm = Maintenance respiration rate
Rg = Growth respiration rate

Factors influencing yield:
- CO₂
- Temperature
- Genotype
- Plant density
- Water supply
- Light availability
- Genetic potential
- Nutrient availability
- Pathogens

Corn yield potential in the Corn Belt

Simulated average yield potential, Mead, NE, 1992-2004

Effect of hybrid and plant population (CMDC plot, plant km April 23)

2005 University of Nebraska-Lincoln
Extension Solution Days
Crop Management to Reach the Genetic Yield Potential of Hybrid Corn

Ken Cassman
Professor of Agronomy and Horticulture, UNL

Jim Erwin
Regional Agronomist, Syngenta Seeds, Inc.

Protocol
- Identify Recovery Rate of Corn Under Stress
 - Shade During Grain Fill
 - 6 Days
 - 12 Days
 - 18 Days
- Planting Dates vs Solar Radiation
 - 4 Hybrids – 1365, 1375, 1380, 1450 HU/Mid Silk
 - 3 Planting Dates – April 27, May 5, May 12

Solar Radiation Review
- Stress.....Lack of Photosynthesis
- Cloudy Days
 - decrease photosynthesis (manufacture of food)
 - taking sugars away from the stalk to promote grain fill
- Heat Units vs Solar Radiation
- Diseases
- Planting Dates

Stress At Pollination
What Happened In 2004?

Where Are We Today?

Grand Island, NE

Average Water Use, Platan Day
From Aug. 26 - Oct. 2

Heat Units

June July August

2002
2003
2004
5 yr ave

Understand What To Do

• Hybrid A – 112 Days – 1375 GDU’s - Mid Silk
 – Planting Date – April 17-24

• Hybrid B – 112 Days – 1340 GDU’s – Mid Silk
 – Planting Date – April 24-30

The Take Away

• Understand the difference between days to maturity and heat units to mid silk and then to black layer

• Using heat units to mid silk; adjust planting dates to hit the highest average amount of solar radiation during grain fill

• Take what nature gives you and then turn it into your advantage

2005 University of Nebraska-Lincoln Extension Solution Days
Crop Management to Reach the Genetic Yield Potential of Hybrid Corn

Ken Cassman
Professor of Agronomy and Horticulture, UNL

Jim Erwin
Regional Agronomist, NK Brand Seeds

Crop Management to Reach the Genetic Yield Potential of Hybrid Corn

- Genetic yield potential is the yield of a well adapted hybrid when soil and crop management eliminate all stresses due to abiotic (water, nutrients) and biotic (weeds, insects, disease) factors
- When pests are controlled, it depends mostly on:
 - solar radiation and temperature
 - optimization of hybrid maturity and plant density
 - Adequate and timely N supply
- Profit maximization typically occurs at 85-90% of genetic yield potential
- Requires sites with reasonable soil quality (no hard pan or barrier to root penetration, good soil structure, lack of toxicities—salinity, alkalinity, acidity)

Hybrid Maturity x Density x N Fertilizer Management Demonstration Plots

- Short (92d) vs later maturity (112d) hybrids
- 28k vs 36k seed drop
- Two N management treatments
 - One dose: 200 lb N/acre before planting
 - Gradual supply (50 lb N/acre in 4 splits): before planting, 5/23, 6/13, and 7/4
- General field management
 - Planted on April 27
 - One section no-till, another tilled and disked
 - Ammonium nitrate N source
 - Optimal irrigation and pest control

Simulated Range in Grain Yield and Yield Determinants at York, NE (based on historical climate data from 1998-2004)
Take home messages

- Achieving genetic yield potential depends on maximizing light interception in time (especially length of grain filling period) and space (early canopy closure; stay green during grainfilling).
- Substantial year-to-year variation in yield potential due to climate (temperature, solar radiation).
 - 2004 was the “perfect” growing season.
- Optimizing planting date, plant density, hybrid maturity, and N management are key factors.
- Use of Hybrid-Maize simulation model and test strips provide efficient means to identify optimal combinations for a given field site.

Other considerations in selecting hybrid maturity and plant density

- Dangerous to have all fields planted to same maturity hybrid, or all fields reaching silking at the same time, due to devastating yield loss from freak events.
 - Straight line wind storms, hail, hot & dry winds at pollination, short-term flooding events, etc.
- While later maturing hybrids may give highest yield:
 - Dry-down requirements to harvestable maturity.
 - Risk of frost and yield stability of later maturing hybrids?
- Marginal cost-benefit of higher plant density needs to be considered and consistency of the response.
 - Diminishing return at densities above 35-37k.
 - Greatest response in high-yielding, more favorable years.