2011 SMFD
NUTRIENT MANAGEMENT ISSUES
FOR SOYBEAN PRODUCTION

Use & Copyright
The materials in this document were developed by and for use by University of Nebraska–Lincoln Extension in the Institute of Agriculture and Natural Resources. The materials are copyrighted by the Board of Regents of the University of Nebraska–Lincoln on behalf of the University of Nebraska-Lincoln Extension. All rights are reserved.

Copies may be printed for individual personal use; however, these materials cannot be republished in print, on another Web site or used commercially without prior written permission. To seek permission to print a publication for educational use, please email us at dpittman1@unl.edu.

Disclaimer
Reference to commercial products or trade names in these publications is made with the understanding that no discrimination is intended and no endorsement by University of Nebraska-Lincoln Extension is implied.

Copyright 2011 University of Nebraska-Lincoln Extension
Nutrient Management Issues for Soybean Production

Charles Shapiro
UNL Soil Scientist – Crop Nutrition

Charles Wortmann
UNL Nutrient Management Specialist

Richard Ferguson
UNL Soils Specialist

Evan Sonderregger
UNL Graduate Student

Lime use to amend acid soils

In 2010, soil tests with and without lime applied were: Mehlich-3 P 25 and 12 ppm; pH 6.0 and 5.4, and Zn 1.1 and 0.8 ppm.

Determine the variability in soil pH. Is variable rate or site-specific application justified?

How should lime be applied?
- blanket application
- management zones
- grid sampling
- on-the-go sensor mapping?

Copyright 2011 University of Nebraska-Lincoln Extension
The agronomics and economics of variable rate liming

Trials in Nance, Saunders, and Wayne Counties
4 treatments
2 reps

Chlorosis Management

<table>
<thead>
<tr>
<th>Soybean chelate Fe</th>
<th>Mean of 3 fields</th>
<th>Chlorotic area</th>
</tr>
</thead>
<tbody>
<tr>
<td>lb/ac</td>
<td>bu/acre</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>64.6</td>
<td>64.9 c</td>
</tr>
<tr>
<td>2</td>
<td>66.5</td>
<td>67.8 b</td>
</tr>
<tr>
<td>3</td>
<td>66.9</td>
<td>68.7 a</td>
</tr>
<tr>
<td>4</td>
<td>64.8</td>
<td>63.7 c</td>
</tr>
</tbody>
</table>

Site-specific options for chlorosis-prone areas:
- Plant tolerant cultivars
- Use Fe chelate starter
- Plant another crop.

Soybean N need: starter N and foliar

Starter N?
1. 1.50 lb in ND and RRV of MN
2. 6% yield increase with 15 lb in Brookings, 2x2
3. Ogallala
4. No yield advantage further south, e.g. MN, MO
5. What about no-till irrigated C-C-SB?

Foliar applied macro and micro nutrients
1. Generally low chance of profitable response.
2. New products (slow release N) and higher yields

Soybean N need: starter N and foliar

SMFD trials
1. Control: no starter N or foliar
2. 0 starter with row cleaning
3. 5 lb starter N in 5 gal
4. 10 lb starter N in 10 gal
5. 10 lb starter N injected 2” to the side of the row
6. 10 lb starter N dribbled over the row
7. 2 gal/acre of Nachurs N-Rage (23-4-2+0.05%Mn; 67% triazone N) + 1 pt/ac SoyGrow (0.36%Fe; 0.5%Mg, 2.6%Mn; 1.5%Zn) at V3-V5
8. N-Rage + SoyGrow at R2-R3
9. N-Rage + SoyGrow at V3-V5 and R2-R3
10. 5 lb starter N and N-Rage + SoyGrow at V3-V5 and R3-R3
Soybean N need: podfill

N application at beginning podfill, e.g. 25-30 lb through fertigation
Little or no response when yield <60 bu/A; inconsistent if >60 bu/A

Nebr. 2009-10: 56 trials. No more gain with 54 lb N or N+4.5 lb S.

Yield increase, applied, >60 bu/A
South-central 2.5
Northeast 1.5
Southeast 0.3

Seasonal pattern of soybean N utilization
(Harper, 1974 and Harper and Hageman, 1972)

High Yield Soybean Trial

<table>
<thead>
<tr>
<th>5 lb. Starter N & Seed Fertilizer</th>
<th>Foliar NPK + Micro at R6/A</th>
<th>BioForge Seed Treatment</th>
<th>Optimizer 600 Seed Treatment</th>
<th>Clip with Lawn Mower at V2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Full</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Full with Cobra</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Minus Starter N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Minus Foliar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Minus BioForge</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Minus Optimizer 600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Minus Clipping</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Minus All</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cobra at 12.5 oz/ac at V2

Copyright 2011 University of Nebraska-Lincoln Extension